
Homework 1: Structure of the blockchain and
how cryptography plays a role

Patrick McCorry

Kings College London, UK
patrick.mccorry@kcl.ac.uk

Abstract. We’ll focus on the blockchain as a data structure to under-
stand how crytography provides a role to self-enforce its integrity. Next
we’ll look at how the database is structured in Bitcoin (UTXO model)
and Ethereum (Account-based model), and how transactions are pro-
cessed to update the database. It is recommended to make notes on this
homework sheet for future use.

1 Cypherpunks write code

Before deep-diving into the blockchain’s structure, its worth taking a step back
to understand the motivation for why something like Bitcoin even exists. On
several occasions, Satoshi Nakamoto made it clear that Bitcoin emerged due
to the mis-trust of banks and the lack of transparency in the global financial
system:

The root problem with conventional currency is all the trust that’s required to
make it work. The central bank must be trusted not to debase the currency, but

the history of fiat currencies is full of breaches of that trust. Banks must be
trusted to hold our money and transfer it electronically, but they lend it out in
waves of credit bubbles with barely a fraction in reserve. We have to trust them

with our privacy, trust them not to let identity thieves drain our accounts. -
Satoshi Nakamoto

Remember, the bitcoin whitepaper was first posted on the 31st October 2008
and the running code was later published on the 3rd January 2009. Satoshi
Nakamoto was clearly working on Bitcoin during the Great Financial Cirsis that
was sparked due to the sub-prime mortgage crisis. The banks were at the heart
of this crisis as they sold mortgages to people with bad credit ratings with the
expectation that if the price of houses kept going up, then both parties could
profit. When the housing market’s bubble burst in 2006, it triggered defaults
as the initial loans were worth more than the purchased house. The toxic loans
and risk spread throughout the markets (i.e. securities, pension funds, etc) and
eventually nearly took them down. As Satoshi Nakamoto highlighted, this was all
possible because banks could lend more money than they held in deposits, and
they had full custody over all deposits. Even worse and to Satoshi Nakamoto’s
frustration, the banks got away with it as national governments bailed them out:



The Times 03/Jan/2009 Chancellor on brink of second bailout for banks. -
Genesis Block

Satoshi Nakamoto was clearly versed in the Cypherpunk’s Manifesto1 which
at its heart focuses on how cryptography can be used to remove power-imbalances
in society. We can speculate that during the financial crisis, Satoshi Nakamoto
was trying to work out how cryptography can be used to build a global currency
that empowers the individual, and not any single nation state. On hindsight (and
in spite of 30+ years research), Satoshi Nakamoto was the first to investigate how
to build a peer-to-peer electronic cash system without the support of a central
authority/currency issuer. This eventually led to the blockchain which is a cryp-
tographic audit log that lets anyone re-compute the contents of a database and
Nakamoto Consensus that lets financially motivated peers compete to update
the database (and thus remove the need for any appointed authority).

For this homework, we’ll solely focus on how cryptography provides integrity
to the blockchain, how the database is structured and how transactions are
processed.

2 Two Cryptographic Primitives

While Bitcoin, Ethereum and their derivatives are called cryptocurrencies, at
heart they are built upon two basic cryptographic primitives.

2.1 Cryptographic Hash Functions

First let’s cover the basic idea of a hash function before we explore how it is
used in a cryptocurrency.

– What is a hash function? [2 marks]
– A hash function is simply a one-way function. It takes an input of arbitrary

sized, and computes a fixed, pseudo-random output.
– Identify and explain the three properties that make a hash function crypto-

graphic? [6 marks]
– Preimage Resistance: Given a hash h, it should be difficulty to compute

the pre-image x. In other words, the hash gives no clue to the preimage.
Second Preimage Sesistance: Whoever computes h = H(x), should not
be able to compute another preimage x′ such that h = H(x′). In other words,
it can act as a real commitment to a secret value.
Collision resistance: Given any hash h, it should be impossible to compute
any pair of inputs x, x′ that corresponds to h. In other words, there can never
be a collision!

Good job! Let’s now cover how a cryptographic hash function is used in
Bitcoin to support simplified payment verification for light clients.

1 https://www.activism.net/cypherpunk/manifesto.html



– What is a merkle tree and a merkle tree root? [2 marks]
– A merkle tree has a list of leaf nodes representing real data items (i.e. trans-

actions), and every non-leaf node is a hash of its child nodes. A merkle tree
root is simply a commitment to the entire tree and every data item.

– How are the blocks chained together to form the blockchain? [2 marks]
– Every hash in the chain is the hash of the previous block header.
– What information is required to prove a transaction is in a block? And how

does a light client verify it? [6 marks]
– The light client must be provided with the block id, the transaction, and

several non-leaf hashes that represent a branch in the merkle tree. The light
client hashes the transaction, recomputes the leaf branch to compute a new
root’. Finally the light client compares the computed root’ with the block
header’s root.

– Why does simplified payment verification have weaker security guarantees
compared to processing the entire blockchain? [4 marks]

– In this mode, a client will not receive or execute every transaction on the
blockchain. They can only verify that a transaction is in the blockchain, but
not that it is valid. Furthermore, they follow the longest and heaviest chain,
and cannot confirm if that blockchain is valid.

2.2 Digital Signatures

Next we need to consider how users can register to use a cryptocurrencya nd
how they can prove they are entitled to spend their new coins.

– What is a digital signature? And what digital signature algorithm is typically
used in cryptocurrencies? [4 marks]

– Given a private key and the corresponding public key, a user can prove math-
emtically they have signed a digital document. Cryptocurrencies typically
use ECDSA (and hopefully someday Schnorr Signatures).

– Why is it important to always use fresh randomness when computing a
digital signature? [2 marks]

– The randomness used in a digital signature (r,s) is public knowledge. Anyone
can detect if two signatures rely on the same randomness. If they do, then
it is straight-forward to break it by computing the private key.

3 Database Structure

The blockchain’s only purpose is to let anyone re-execute all transactions in
sequential order to re-compute a database. In class, we tried to focus on the
database’s structure for both Bitcoin and Ethereum:

– Bitcoin’s database follows a UTXO model as the ledger simply consists of a
list of unspent transaction outputs.

– Ethereum’s database follows an Account-based model where the ledger records
the current balance, storage and nonce for every account.



Let’s take this opportunity to assess our understanding of the blockchain’s
structure. To begin, we’ll focus on Bitcoin:

– What is the role of an input and output in a Bitcoin transaction? And why
is there no real concept of a coin? [4 marks]

– An output specifies the spending conditions before a coin can be spent,
and an input specifies the cryptographic evidence of why the spender is
authorised to spend the coin. A transaction can combine the coins from all
inputs into a single output or split the coins into several outputs. As such,
there is no fixed coin that we can follow.

– Name three typical spending conditions that is supported in Bitcoin. [3
marks]

– A digital signature from a specified Bitcoin address. If the secret x of a hash
h is revealed. If the transaction is spent before time t.

– What is the UTXO set? [2 marks]
– A list of unspent transaction outputs. Each script is associated with a set of

coins.
– When the wallet software processes a transaction inside a block, how is the

UTXO set updated? [4 marks]
– The software will first check all transaction inputs. It will remove spent

transaction outputs from the UTXO set. Afterwards it will add the new
unspent outputs to the UTXO set.

– Let’s pretend 10 transactions are accepted into a block, and each transaction
has an output that sends 1 coin to the bitcoin address A. How many entries
in the UTXO set will be recorded and why? [2 marks]

– 10. We don’t store a users balance, only a list of unspent transaction outputs.
– Why is it difficult to assume that if a transaction is spending two or more

sets of coins, then they all belong to the same user? [4 marks]
– Multiple users can collaborate to combine their inputs into a single trans-

action. This can be done in such a way where users don’t need to trust
each other, and can be used to make it difficult to link the inputs/outputs.
Coinjoin is an example tumbling technique for doing it.

The UTXO model is popular for its simplicity, its statelessness, and its de-
terminism. Except for some quirks, it works great for processing financial trans-
actions and supporting obfuscation of ownership. However it has so far proven
difficult for designing fair-exchange protocols that run on top of Bitcoin which
eventually led to the development of Ethereum’s account-based model.2 Let’s
explore some questions around it:

– What information is stored for each account? [5 marks] In class, we men-
tioned it was the account hash, storage, contract code, coins and nonce. If
a student answers with ”storage trie root” this is acceptable, but they must
mention it contains the address and contract storage.

2 A long running joke is that designing a new protocol in Bitcoin can get you a top-tier
Oakland publication, whereas the same protocol in Ethereum gets you a blog post.



– What is a replay attack? And why does the transaction nonce stop it? [4
marks]
A replay attack lets an attacker re-submit the same transaction to the
network several times and as a result it is executed several times. The
transaction nonce ensures that a transaction is only accepted once into the
blockchain.

– When processing an Ethereum transaction that interacts with a contract,
what basic validation checks are performed on the transaction and how does
the software update the account database? [6 marks]
Transaction Validation Does the user have a sufficient balance to cover
the maximum fee? i.e. userBalance > gasPriced * gasLimit. Does this trans-
action have a larger nonce than what is already stored for the user? i.e. to
prevent replay attacks.
Update contract storage The contract’s function is executed to compute
the contract’s new state. If the transaction does not run out of gas, then
the database is updated to store the contract’s new state. i.e. if I play the
winning move in a game, then the outcome (I’ve won) should be recorded in
the contract! If the transaction runs out of gas while executing the function,
it simply fails and there is no update for the contract.
Update user’s account The transaction signer’s balance should be up-
dated to deduct the transaction fee (and any coins sent to the smart con-
tract). This transaction’s nonce is also stored (i.e. to prevent replay attacks).

For the final question let’s discuss:

– What are the subtle differences between Bitcoin’s UTXO model and Ethereum’s
account-based model? [8 marks]
Number of signers In Bitcoin’s UTXO model, there can be one or more
signers per transaction. So far, Ethereum’s account-based model only sup-
ports one signer per transaction.
Evidence supplied when spending a coin In Bitcoin, the signer needs to
specify which coins they are spending (i.e. what unspent transaction output
do we care about?). In Ethereum, no evidence is required - we just deduct
from the user’s balance.
Entries in the database In Bitcoin, the balance of a user is not aggre-
gated and every time a user receives a coin it will create a new entry in the
database. In Ethereum, the balance of the account is simply updated.
Protection agaisnt replay attacks In Bitcoin - there is no risk of a replay
attack. If a transaction is signed, then it will always spend the desired inputs
and always have the same outcome. In Ethereum - a nonce is required to
prevent the same transaction being accepted more than once.
Stateless vs Stateful In Bitcoin - the state and transaction are interwined.
When we spend an UTXO - the state is destroyed. While there are techniques
like Covenants that may someday allow an unspent output restrict how a
future output is created, right now it doesn’t exist in Bitcoin. In Ethereum
- the state and transaction are not interwined. All state is stored in the



database, and the contract is responsible for self-enforcing how the state can
be transitioned.

While the answers will be released in a week’s time, if you found
any of the questions difficult then please visit Patrick McCorry during
his office hours.


	Homework 1: Structure of the blockchain and how cryptography plays a role
	Patrick McCorry

